Extensions 1→N→G→Q→1 with N=C2 and Q=C23.Q8

Direct product G=N×Q with N=C2 and Q=C23.Q8
dρLabelID
C2×C23.Q864C2xC2^3.Q8128,1121


Non-split extensions G=N.Q with N=C2 and Q=C23.Q8
extensionφ:Q→Aut NdρLabelID
C2.1(C23.Q8) = C24.5Q8central extension (φ=1)64C2.1(C2^3.Q8)128,171
C2.2(C23.Q8) = C24.631C23central extension (φ=1)128C2.2(C2^3.Q8)128,173
C2.3(C23.Q8) = C24.633C23central extension (φ=1)128C2.3(C2^3.Q8)128,175
C2.4(C23.Q8) = M4(2).12D4central stem extension (φ=1)32C2.4(C2^3.Q8)128,795
C2.5(C23.Q8) = M4(2).13D4central stem extension (φ=1)64C2.5(C2^3.Q8)128,796
C2.6(C23.Q8) = C4⋊C4.106D4central stem extension (φ=1)64C2.6(C2^3.Q8)128,797
C2.7(C23.Q8) = (C2×Q8).8Q8central stem extension (φ=1)128C2.7(C2^3.Q8)128,798
C2.8(C23.Q8) = (C2×C4).23D8central stem extension (φ=1)64C2.8(C2^3.Q8)128,799
C2.9(C23.Q8) = (C2×C8).52D4central stem extension (φ=1)128C2.9(C2^3.Q8)128,800
C2.10(C23.Q8) = C24.Q8central stem extension (φ=1)168+C2.10(C2^3.Q8)128,801
C2.11(C23.Q8) = M4(2).15D4central stem extension (φ=1)328-C2.11(C2^3.Q8)128,802

׿
×
𝔽